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Abstract. We note that it is possible to construct a bond vertex model that displaysq-state Potts
criticality on an ensemble ofφ3 random graphs of arbitrary topology, which we denote as ‘thin’
random graphs in contrast to the fat graphs of the planar diagram expansion.

Since the four-vertex model in question also serves to describe the critical behaviour of the
Ising model in field, the formulation reveals an isomorphism between the Potts and Ising models
on thin random graphs. On planar graphs a similar correspondence is present only forq = 1, the
value associated with percolation.

1. Introduction

A description of the Potts model on planar random graphs as an ice-type vertex model on the
associated medial graphs was developed some years ago by Baxteret al [1]. In this paper we
formulate a bond vertex description of the Potts model on non-planar random graphs, which
we call ‘thin’ graphs to distinguish them from the fat graphs which appear in a planar graph
expansion. The study of spin and vertex models on such thin random graphs is of interest as a
way of obtaining mean-field-like exponents [2–5]. Mean-field exponents are obtained because
the thin graphs look locally like a Bethe lattice, but all the branches of the tree-like Bethe
lattice structure are closed by predominantly large loops†. Planar graphs on the other hand
have a loop distribution that is strongly peaked on short loops and a fractal-like baby universe
structure [6].

Nonetheless, the methods used for calculating the partition functions of spin models on thin
graphs may still be borrowed from the study of the planar random graphs [7]. These methods
are based on the observation that planar graphs can be thought of as arising as Feynman
diagrams in the perturbative expansion of integrals overN × N Hermitian matrices. Each
edge in such a Feynman diagram is ‘fat’ or ribbon-like, since it carries two matrix indices.
In theN → ∞ limit, fat graphs of planar topology are picked out, since there is an overall
factor ofNχ for any graph, whereχ is the Euler characteristic. TheN → 1 limit, on the other
hand, weights all topologies equally. In this case the matrix fat-graph propagators degenerate
to scalars, so we denote the generic random graphs of theN → 1 limit as ‘thin’ graphs. The
Feynman diagram approach used in studying the statistical mechanics of models on planar
random graphs‡ still applies for the thin graph case too. In fact, life is even easier in this case
since one is dealing with scalar rather than matrix integrals.

† The critical exponents obtained in Bethe lattice calculations are those of mean-field theory, but non-universal
quantities such as the critical temperature depend on the coordination number of the Bethe lattice. As one takes the
coordination number of the Bethe lattice to infinity one obtains the ‘real’ mean-field critical temperature.
‡ Which is equivalent to coupling the models to 2D quantum gravity.
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The partition function for a statistical mechanical model on an ensemble of thin random
graphs with 2m vertices can be defined by means of an integral of the general form [2]

Zm ×Nm = 1

2π i

∮
dλ

λ2m+1

∫ ∏
i dφi

2π
√

detK
exp(−S) (1)

where the contour integral over the vertex couplingλ picks out graphs with 2m vertices,S is an
appropriate action,K is the inverse of the quadratic form in this action, and theφi are sufficient
variables to describe the matter in the theory. The factorNm gives the number of undecorated
(without matter) graphs in the class of interest and disentangles this usually factorial growth
from any phase transitions. For the class of thinφ3 (three-regular) random graphs we discuss
here

Nm =
(

1

6

)2m
(6m− 1)!!

(2m)!!
. (2)

In the largem, thermodynamic limit, saddle point methods may be used to evaluate equation (1).
Similar calculations are familiar in the context of estimations of large-order (i.e. largem)
behaviour in perturbation theory for quantum mechanical [8] and field theoretical path integrals
[9, 10] and vacuum decay effects [11]. The use of simple, scalar integrals and saddle point
methods to count classes of (decorated) random graphs at large orders was developed in [3],
although such ideas are already latent in the work of [8].

The saddle point equation forλ may be decoupled by scaling it out of the action as an
overall factor, leaving any critical behaviour residing in the saddle point equations for the
matter fieldsφi . Phase transitions appear as an exchange of the dominant saddle point.

2. The Potts model on thin graphs

The Hamiltonian for aq-state Potts model can be written

H = β
∑
〈ij〉

δσi ,σj (3)

where the spinsσi take onq values. The action which generates the correct Boltzmann weights
for theq-state Potts model onφ3 graphs to be used in equation (1) is [5,12]

S = 1

2

q∑
i=1

φ2
i − c

∑
i<j

φiφj − λ
3

q∑
i=1

φ3
i (4)

wherec is 1/(exp(2β)+q−2). Since for anyq one finds a high-temperature, disordered-phase
solution of the formφi = 1− (q − 1)c, ∀i bifurcating to a broken symmetry, ordered-phase
solutionφ2 = . . . φq−1 6= φ1 at c = 1/(2q − 1), an effective action with only two variables
φ, φ̃, whereφ̃ = φ1, φ = φ2, φ3, . . . , φq , suffices to describe the transition [5]

S1 = 1

2
(q − 1)[1− c(q − 2)]φ2 − λ

3
(q − 1)φ3 +

1

2
φ̃2 − λ

3
φ̃3− c(q − 1)φφ̃. (5)

In the high-temperature phaseφ = φ̃ and this collapses to

S2 = q

2
(1− c(q − 1))φ2 − λq

3
φ3. (6)

The bifurcation point isnot the first-order transition point displayed by the model for
q > 2, but rather a spinodal point. The first-order transition is pinpointed by observing that
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Figure 1. The magnetizationm for a four-state Potts model
as calculated from the saddle point solutions. The high-
temperature solution is shown as a dotted line, one low-
temperature solution as a solid curve and the other as a
dashed curve. The first-order jump inm is atQ.

the free energy in the saddle point approximation is the logarithm of the actionS, so the first-
order transition point is given by thec value, and hence temperature satisfyingS1 = S2. This
gives the critical value ofc as

c = 1− (q − 1)−1/3

q − 2
(7)

in agreement with other mean-field approaches [13, 14]. This can be seen explicitly by
translating between the parametersθ = exp(−2β) of [14]† and thec = 1/(θ−1 + q − 2)
of this paper. The critical value ofθ derived from equation (7)

θc = (q − 1)1/3− 1

q − 2
(8)

agrees with that presented in [14] for a three coordinated Bethe lattice.
The nature of the phase diagram can best be clarified by examining a diagram of the

magnetization defined by

M = φ̃3

(φ̃3 + (q − 1)φ3)
(9)

versusc, as plotted in figure 1 forq = 4. We can see that the bifurcation point atP , c = 1/
(2q−1) for generalq, lies below the first-order transition point atQ, c = [1−(q−1)−1/3]/(q−
2). The second spinodal point atO, c = [q − 1− 2

√
q − 1]/[(q − 1)(q − 5)], is given by

the vanishing of a square root in the saddle point solution. Asq → 2,O,P ,Q coalesce, the
skewed pitchfork of figure 1 becomes symmetrical and we recover the continuous mean-field
transition of the Ising model—which is equivalent to theq = 2 Potts model. This is to be
expected since settingq = 2 directly in the action of equation (5) and the magnetization of
equation (9) recovers the Ising action and magnetization.

Sinceq appears explicitly as a parameter in equation (5) the formalism is ideally suited
to studying percolation on thin graphs as theq → 1 limit of the Potts model, as well as the
random resistor,q → 0, and dilute spin glass,q → 1

2, problems.

† Allowing for a factor of two in the respective definitions ofβ in [14] and that used here.
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Figure 2. The possible bond vertices which appear
in the model. The Potts weights on the random
graph, which can be read off from equation (11),
are: a = (1 + v)/2 , b = (κ∗)1/2(1 − v)/2,
c = κ∗(1 +v)/2 andd = (κ∗)3/2(1− v)/2.

3. A Potts vertex model

In order to recast the Potts action as a bond vertex model we first carry out the following
rescaling on equation (5):

φ→ 1√
(q − 1)(1− c(q − 2))

φ (10)

which gives both the quadratic terms the canonical coefficient of1
2, followed by the linear

transformationφ→ (X − Y )/√2, φ̃→ (X + Y )/
√

2 and a further rescaling of the quadratic
terms andλ to obtain

S = 1

2
(X2 + Y 2)− λ

3

(1 +v)

2
[X3 + 3κ∗XY 2] − λ(κ

∗)3/2

3

(1− v)
2

[
Y 3 +

3

κ∗
YX2

]
(11)

whereκ∗ = (1− κ)/(1 +κ) and

v = 1

(q − 1)1/2(1− (q − 2)c)3/2

κ =
√

c2(q − 1)

1− (q − 2)c
.

(12)

The notation in equation (11) has been chosen to facilitate comparison with the Ising model
in field below.

We can see from the above that the action of equation (5) for the Potts model on thinφ3

graphs can be transformed via some rescalings and a linear transformation of the variables
into a four-vertex model on theφ3 graphs. What is more, the vertex model is symmetric since
the weight depends only on the number ofX andY bonds at a vertex†. The different vertices
in the model are shown in figure 2. Although the result of a straightforward transformation,

† On random graphs the notion of orientation is lost, so there are fewer possibilities for defining independent vertex
weights than on regular lattices. On planar random graphs one can still define a cyclic ordering of bonds round a
vertex consistently, but even this is lost on thin graphs.



A Potts/Ising correspondence on thin graphs 5033

equation (11) entails a surprising consequence. The action for the Ising model (i.e. theq = 2
state Potts model) in field on thin graphs† is given by [15]

S = Tr

{
1

2
(X2 + Y 2)− gXY +

λ

3
[ehX3 + e−hY 3]

}
(13)

whereg = exp(−2β) andh is the external field. Carrying out the transformations

X→ (X + Y )/
√

2

Y → (X − Y )/
√

2
(14)

followed by the rescalingsX→ X/(1− g)1/2, Y → Y/(1 +g)1/2, λ→√2λ(1− g)3/2 again
gives a four-vertex model [16]

S = 1

2
(X2 + Y 2)− λ cosh(h)

3
[X3 + 3g∗XY 2] − λ sinh(h)(g∗)3/2

3

[
Y 3 +

3

g∗
X2Y

]
(15)

whereg∗ = (1− g)/(1 +g).
We thus find that the vertex model action for theq state Potts model and that for the Ising

model in field are isomorphic under the identifications

tanh(h) = 1− v
1 +v

g = κ.
(16)

In fact, backtracking to equation (5) we can see that the rescaling of equation (10) transforms
the action into that of an Ising model in field, even before the transformation to a vertex model

S → 1

2
(φ2 + φ̃2)− κφφ̃ − λv

3
φ3− λ

3
φ̃3. (17)

The equivalence between the Potts and Ising models is surprising from the physical
point of view since we already know that the Potts models display a first-order transition
for q > 2 [5, 13] whereas the Ising model displays a (mean-field) second-order transition.
Things become clearer when we consider the mapping of the Potts values forc(q, β) at the
critical and spinodal points onto the parametersκ, v, which play the role of temperature and
field in the Ising model (or more precisely exp(−2β) and exp(2h)). The corresponding values
of κ for O,P ,Q are shown in figure 3 and forv in figure 4. We find that the first-order
transition point in the Potts models atQ, wherec = [1− (q − 1)−1/3]/(q − 2), maps onto

κ = ± (q − 1)2/3− (q − 1)1/3

q − 2
v = 1

(18)

where the sign on the right-hand side of the expression forκ is chosen to give a positive
answer depending on whetherq < or > 2. Remarkably, we see that this corresponds to a
zero-field point in the Ising model, withκ < κc = 1

3, the Ising critical value. Since this means
that β > βcritical Ising, this point lies on the zero-field line separating the two possible spin
orientations in the ordered phase, so the first-order temperature driven transition of the Potts
model is mapped onto the field driven transition of the Ising model. Asq → 2 from above or
below,κ → 1

3, the Ising critical value, and the transition becomes the continuous mean-field
Ising transition.

† And on planar graphs too, if we takeX, Y to be matrices.
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Figure 3. κ versusq for the pointsO,P ,Q. The curves touch atq = 2, κ = 1
3 which is the Ising

critical point.

Figure 4. v versusq for the pointsO,P ,Q. Sincev = 1 corresponds to zero field in the equivalent
Ising model, we see thatQ is a zero-field point for allq. ForO,P on the other hand,v = 1 only
atq = 2.
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The spinodal point atP wherec = 1/(2q − 1) maps onto

κ =
√

q − 1

(2q − 1)(q + 1)

v = 2q − 1

(q − 1)1/2(q + 1)

(19)

which tends towards the standard mean-field Ising transition point in zero field asq → 2.
Similarly, the other spinodal point atO, c = [q − 1− 2

√
q − 1]/[(q − 1)(q − 5)], maps onto

κ = (q − 1)1/4

(2
√
q − 1 + 1)1/2(

√
q − 1 + 2)1/2

v = (
√
q − 1 + 2)3/2(q − 1)1/4

(2
√
q − 1 + 1)3/2

(20)

so we see that both these points are not, in general, zero-field points in the Ising transcription
except atq = 2.

A natural question to ask is what is so special aboutQ from the Ising point of view.
If we look at the effect of the scaling of equation (10) on the original Potts action of
equation (5) and demand ac value which givesv = 1 (i.e. zero field) we get precisely
c = [1− (q − 1)−1/3]/(q − 2). The first-order transition point atc(Q) is thus the only point
which maps onto zero field in the Ising model for generalq.

4. Discussion

The main conclusion of this paper may be simply stated: the Ising model in field and the Potts
model on thinφ3 random graphs may be mapped onto one another. This can be seen either
by mapping them both to a four-vertex model, or by directly rescaling the Potts action. The
equivalence is, at root, due to the fact that the Potts action of equation (5) requires only two
variables, just like the Ising model, even though the Potts spins haveq states. We have also
seen that the first-order nature of the Potts transitions forq 6= 2 and the continuous transition
of the Ising model are not in contradiction, since the Potts transition maps onto the field driven
transition of the Ising model. The first-order Potts transition point lies on the zero-field Ising
locus atβ > βcritical Ising and moves to the continuous Ising transition point asq → 2.

One might enquire as to whether similar relations could exist on planar random graphs
where the scalars in actions such as equation (4) are replaced byN × N Hermitian matrices.
Unfortunately, a two variable (in this case matrix variable) effective action such as that in
equation (5) does not appear to exist in such a case. However, one can arrive at a 3q + 1
vertex model for planar graphs by using Kazakov’s approach [12] of introducing an auxiliary
matrix to decouple the Potts interactions. This transforms the matrix action for theq state
Potts model:

S = Tr

{
1

2

q∑
i=1

φ2
i − c

∑
i<j

φiφj − λ
3

q∑
i=1

φ3
i

}
(21)

to

S = Tr

{
1

2
X2 +

1 + c

2

q∑
i=1

φ2
i −
√
c
∑
i

Xφi − λ
3

q∑
i=1

φ3
i

}
(22)

which after a shift inφi and a rescaling may be written as

S = Tr

{
1

2
X2 +

q∑
i=1

1

2
φ2
i −

λ

3

q∑
i=1

(X3 + 3v1/2X2φi + 3vXφ2
i + v3/2φ3

i )

}
(23)
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wherev = exp(β)− 1. In general, this will not be equivalent to an Ising model since we have
too many matrices, but whenq = 1, which is related to the problem of percolation, we do
recover an Ising-like action.

It would be of some interest to see whether this transcription might shed some light
on either percolation or the Ising model in field on planar random graphs. It would also be
interesting to explore the relation between the planar graph Potts vertex model of equation (23)
and the medial graph vertex model of Baxteret al [1].
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Johnston D and Plecháč P 1998J. Phys. A: Math. Gen.31475
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